

789 N. Dixboro Rd. Ann Arbor, MI 48015, USA 1-800.NSF.MARK | +1-734.769.8010 | <u>www.nsf.org</u>

TEST REPORT

Send To: C0091157

Mr. Edward Morassi 50 Bearfoot Road Northborough, MA 01532

Facility: C0091157

Solmetex, LLC 50 Bearfoot Road Northborough, MA 01532

Result:	PASS	Report Date: February 10, 2015
Customer Name:	Solmetex LLC	
Tested To:	ISO 11143:2008	
Description:	Hg5-001K with collection container series CC-1M	
Test Type:	Efficiency and operation	
Test Dates:	November 18, 19, & 20, 2014	
Test Location:	NSF International Ann Arbor MI	
Job Number:	J-00153078	
Project Number:	9991779	
Project Manager:	Sharon Steiner	

Executive Summary: The Hg5-001K with collection container series CC-1M met the ISO 11143:2008 requirements for amalgam retention efficiency, operation and maintenance, and labeling. Testing was completed according to ISO 11143:2008.

Thank you for having your product tested by NSF International.

Please contact your Project Manager if you have any questions or concerns pertaining to this report.

Tests Performed By: Kristina Blott

Report Authorization:

Ata Ciechanowski, Assistant Director - Engineering Laboratory

FI20141229000001

J-00153078

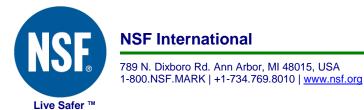
789 N. Dixboro Rd. Ann Arbor, MI 48015, USA 1-800.NSF.MARK | +1-734.769.8010 | <u>www.nsf.org</u>

TEST REPORT

Test Sample

Manufacturer:	Solmetex, LLC
Designation:	Hg5-001K with collection container series CC-1M
Type Classification:	Type 2 - Sedimentation
Serial Number:	Hg5-K-45001
Maximum Flow Rate:	1 Liter per minute
Maximum Fillable Volume:	0.95 Liters
Total System Volume:	7.5 Liters
System Dimensions:	Height – 29 inches Length – 8 inches Width – 11 inches

Figure 1 – Hg5-001K with collection container series CC-1M


Vacuum collection system wastewater enters the Hg5-001K surge tank and then drops by gravity into the removable sedimentation vessel, where heavy particles can settle out. Wastewater flows from the sedimentation vessel through a flow control outlet device and back into the vacuum line. Suction from the vacuum system does not impact sedimentation as the flow path for air is separate from the flow path for liquid. Air exits the top of the surge tank to bypass the sedimentation vessel.

Test Standard

Testing was performed to determine compliance of the supplied sample to ISO 11143:2008 "*Dentistry – Amalgam separators*". ISO 11143 specifies requirements for amalgam separators, such as amalgam retention efficiency and instructions for use, operation and maintenance.

FI20141229000001

J-00153078

TEST REPORT

Amalgam Sample

Amalgam test samples were obtained from "bm becker messtechnik gmbH". Each sample consisted of 10 g dental amalgam as specified in ISO Standard 11143. The detailed reports on the test samples are included in Appendix A.

Particle Size Distribution:

- 3000 mg, < 100 μm
- 1000 mg, 100μm 500 μm
- 6000 mg, 500μm 3150 μm

Amalgam Sample Lot Numbers:

• Charge 100416-03/14

Test Procedure

The test procedure used to determine the efficiency of the separators is defined in ISO 11143 for Type 2 systems. Deviations from the standard test procedure are noted below.

- Effluent Collecting Vessel
 - Multiple 2-liter glass beakers were used. The standard specifies a single stainless steel vessel with a minimum volume of 45 liters.
- Filters
- Diameter of filter membranes was 47 mm. The standard specifies 50 mm minimum.
- Nominal pore size used was 1.2 microns. The standard specifies pore sizes of 12.0, 3.0, and 1.2 microns
- A single filter was used for each replicate.
- Separating gauze was used in between filter membranes.
- Filtering was completed by vacuum instead of pressure.

Filters

One filter was used for each amalgam retention efficiency test:

1.) 1.2 micron nominal pore size, cellulose nitrate membrane filter, 47 mm diameter

All of the effluent was filtered through a single 1.2 micron filter.

FI20141229000001

TEST REPORT

Number of Tests Performed

Six tests were run on the sample separator provided by the manufacturer: Three tests were run on the separator when empty and three tests were run on the separator when filled to 95% of the maximum fillable volume.

The separator was filled to 95% of the maximum fillable volume with 70% glass beads 1 mm in size and 25% amalgam scrap ground to less than 300 micron. Table 1 shows the filling volumes for each material.

Model	Specified Maximum Filling Level (mL)	Volume of Scrap Amalgam Used (mL)	
Collection container series CC-1M	950	238	665

Table 1 – Loading of the Full Amalgam Separator

Test Data

The results from the efficiency tests are shown in Tables 2 and 3. The tare weight and final weight includes a stainless steel weighing dish. This helped to keep the residue in place during drying.

Empty Trial	Filter Size	Initial Filter Weight (g)	Final Filter Weight (g)	Un-separated Amalgam (g)	Weight of Challenge (g)	Efficiency
1	1.2 μm	8.82878	8.83109	0.00231	0.00884	99.977%
	Tri	al 1 Total		0.00231	9.99884	99.977%
2	1.2 μm	9.13720	9.13835	0.00115	9.99785	99.988%
Trial 2 Total			0.00115	9.99785	99.988%	
3	1.2 μm	9.12988	9.13049	0.00061	10,00226	99.994%
	Trial 3 Total			0.00061	10.00326	55.59470
	Average					99.986%

 Table 2 – Empty Amalgam Separator Test Results

Full Filter **Initial Filter Final Filter Un-separated** Weight of Trial Size Weight (g) Weight (g) Amalgam (g) Challenge (g) Efficiency 1 1.2 μm 0.00798 8.62321 8.63119 9.99881 99.920 Trial 1 Total 0.00798 2 1.2 µm 0.00127 9.13838 9.13965 9.99550 99.987 Trial 2 Total 0.00127 3 1.2 μm 9.15271 9.15407 0.00136 9.99646 99.986 Trial 3 Total 0.00136 99.965% Average

Table 3 – Full Amalgam Separator Test Results

Efficiency

Live Safer ™

The minimum efficiency required by ISO 11143 is 95% by mass.

Empty Amalgam Separator: Hg5-001K with collection container series CC-1M, $\eta_1 = 99.986\%$

Full Amalgam Separator: Hg5-001K with collection container series CC-1M, $\eta_2 = 99.965\%$

The lowest efficiency measured from the full and empty tests (η_1 or η_2) is the amalgam separator efficiency. Therefore, the overall efficiency for the sample is determined to be 99.965%.

Warning System (Type 2 System)

The Hg5-001K with collection container series CC-1M is provided with a fill line on the collection vessel. The fill line may be used to warn the user when the system is almost full or full.

Alarm System for Collecting Container (Type 2 System)

The Hg5-001K with collection container series CC-1M is provided with a fill line on the collection vessel. The fill line may be used to warn the user when the system is almost full or full. The manufacturer clearly defines procedures by which the proper function of the amalgam separator is ensured, giving controllable maintenance and recovery procedures in the owner's manual.

Alarm System for Malfunction

Not applicable to a Type 2 system.

FI20141229000001

J-00153078

Page 5 of 9

TEST REPORT

TEST REPORT

Removal of Filled Collecting Container

The filled collecting container can be removed and sealed so that no spillage occurs during replacement and transfer of the container.

Maximum Fillable Volume

The manufacturer claimed maximum fillable volume of the collecting container is 950 mL. The mark on the collection vessel was found to be accurate during the filling process.

Hg5-001K with collection container series CC-1M: 950 mL

Electrical Safety

Hg5-001K with collection container series CC-1M does not incorporate any electrical components.

Results Obtained

Efficiency Pass/Fail Criteria:	Hg5-001K with collection container CC-1M, 99.965%	Pass
Warning System:	Hg5-001K with collection container CC-1M –	Pass
Alarm System for Collecting Container:	Hg5-001K with collection container CC-1M –	Pass
Removal of Filled Collecting Container:	Hg5-001K with collection container CC-1M –	Pass
Maximum Fillable Volume:	Hg5-001K with collection container CC-1M –	Pass

789 N. Dixboro Rd. Ann Arbor, MI 48015, USA 1-800.NSF.MARK | +1-734.769.8010 | <u>www.nsf.org</u>

TEST REPORT

Appendix A Test Sample Particle Size Distribution Reports

Manuf	facturer (Cortificate	for sam	nles ac	cording ISO 11143
Production date:		März 14 Charge 100416-03/14		Fraction 1:	ISO 11143 ISO amalgam sample 500 - 3150 µm
Customer:		NSF International 789 N. Dixboro Rd ann Arbor, MI 48105		Fraction 2: Fraction 3:	100 - 500 μm < 100 μm
Sedigramm c	hart date:	August 16, 201	3		
Order No:		Email dated 14-July-2014, Order No. 108985			985
Delivery:		22.07.2014			
	Fraction 1 Fraction 2 Fraction 3	500 - 3150μm 100 - 500μm <100μm		6g ± 10mg 1g ± 5mg 3g ± 5mg	
	Total			10g ± 5mg	
Probe No	Anteil [g]: Fraction 1	Fraction 2	Fraction 3	Total	
7	5,997	1,000	3,002	2 9,9	99
8	6,005	5 1,000	2,999	9. 10,0	04
9	6,001				
10	5,997				
11	5,998				
12 13	6,001 6,004		,		
13	6.004				
15	6,001				
16	6,003		P		
17	6,005	5 0,997	2,999		
18	6,004				
19	6,003				
20	6,002				
21	5,998				
22 23	5,999 5,999				
23	5,990				
24	5,998	P			
25	6,000				
27	6,000	-			
28	6,00				
29	5,999				
30	6,003	3 0,997	7 3,00	2 10,0	02
Attachments	Particle size	distribution for d	< 100µm		

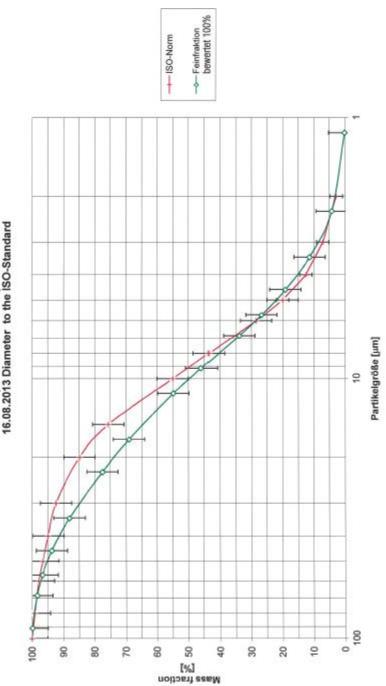
Report of the x-ray sedigraphical test on August 08, 2013

Eschborn, January 21st, 2014

Stamp/Signature

Becker Technologies GmbH, Kölner Str. 6, 65760 Eschborn, Germany

FI20141229000001


J-00153078

Page 7 of 9

789 N. Dixboro Rd. Ann Arbor, MI 48015, USA 1-800.NSF.MARK | +1-734.769.8010 | <u>www.nsf.org</u>

TEST REPORT

Live Safer TM

Particle size distribution Comparision of the analysis dated 16.08.2013 Diameter to the ISO-Standard

FI20141229000001

J-00153078

Page 8 of 9

789 N. Dixboro Rd. Ann Arbor, MI 48015, USA 1-800.NSF.MARK | +1-734.769.8010 | www.nsf.org

TEST REPORT

Kornverteilung

Kornanalyse:	Micromeritics	16.08.2013
Sample Density:	ρ ₆ =	11,9950 [kg/m ³]
Liquid Density:	$\rho_L =$	1,1728 [kg/m ³]
Sample-Density ISO-Norm:	ρ _{8,N} =	9,5000 [kg/m ³]
Umrechnung Partikelgröße auf "Normdichte":]
Mada una Mara Piana	1 - 1	$\rho_s - \rho_L$

Werte von Mass Finer Low Diameter Wert interpoliert Ť J

ρ _L = ρ _{8,N} =	9,5000 [kg/m ³]
$d_2 = d_1 \bullet$	$\sqrt{\frac{\rho_s - \rho_L}{\rho_{s,N} - \rho_L}}$

Mes	swerte	Messwert	e berechnet	EBe 08.02.95	ISO-Norm
Partikel- Größe d ₁	Feinfraktion Durchgang	norm. Partikel- Größe d ₂	Feinfraktion bewertet 100%	Feinfraktion Soll	Feinfraktion Soll
[µm]	[%]	[µm]	[%]	[%]	[%]
300	94,3	342,0			
250	94,3	285,0			
150	94,5	171,0			
100	94,1	114,0	100,0	100,00	100,00
80	94,0	91,2	99,9	98,75	99,15
60	92,6	68,4	98,4	97,50	97,89
50	91,0	57,0	96,7	96,25	96,58
40	88,2	45,6	93,7	93,75	94,87
30	82,9	34,2	88,1	90,00	92,40
20	73,0	22,8	77,6	82,50	84,90
15	65,0	17,1	69,1	75,00	75,70
10	51,6	11,4	54,8	58,75	55,00
8	43,2	9,1	45,9	46,25	43,53
6	31,9	6,8	33,9	31,25	28,50
5	25,2	5,7	26,8	22,50	20,00
4	18,0	4,6	19,1	15,00	12,54
3	10,7	3,4	11,4	8,13	7,14
2	4,0	2,3	4,3	2,50	2,85
1	0,2	1,1	0,2		